
Deformation of a helical filament by flow and electric or magnetic fields
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Motivated by recent advances in the real-time imaging of fluorescent flagellar filaments in living bacteria
fTurner, Ryu, and Berg, J. Bacteriol.82, 2793 s2000dg, we compute the deformation of a helical elastic
filament due to flow and external magnetic or high-frequency electric fields. Two cases of deformation due to
hydrodynamic drag are considered: the compression of a filament rotated by a stationary motor and the
extension of a stationary filament due to flow along the helical axis. We use Kirchhoff rod theory for the
filament, and work to linear order in the deflection. Hydrodynamic forces are described first by resistive-force
theory, and then for comparison by the more accurate slender-body theory. For helices with a short pitch, the
deflection in axial flow predicted by slender-body theory is significantly smaller than that computed with
resistive-force theory. Therefore, our estimate of the bending stiffness of a flagellar filament is smaller than that
of previous workers. In our calculation of the deformation of a polarizable helix in an external field, we show
that the problem is equivalent to the classical case of a helix deformed by forces applied only at the ends.
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I. INTRODUCTION

Many micro-organisms swim using thin, flexible flagella.
For example, a mammalian sperm cell swims by sending
traveling waves of bending down its flagellumf1g. At these
micron length scales, the inertia of both the cell and the fluid
is unimportant and viscous effects dominate: the Reynolds
number is very low. At zero Reynolds number, reciprocal
motions like the waving of a rigid oar generate zero net
translation per periodf2g. Thus, the flexibility of the sperm
flagellum is crucial for motion. Another example where the
flexibility of the flagellum is important is the chemotaxis of
the bacteriumEscherichia colif3g. These cells use several
rotating helical flagella to swim. Each flagellum must be stiff
enough to hold its helical shape when subject to viscous
stresses; if the flagellar filaments were too flexible, they
would twist and bend as they rotate and fail to generate pro-
pulsive force. On the other hand, if the filaments were too
stiff, then it would be impossible to form the bundle which
pushes the cell alongf4g, since the filaments in a rotating
bundle must continuously deformf5g. Furthermore, the fila-
ments must be sufficiently flexible that viscous stresses can
trigger the polymorphic transition which the cell uses to
change its swimming directionf4,6g.

Despite the importance of the interplay of flexibility and
hydrodynamics, most theoretical treatments of the dynamics
of flagella do not fully incorporate the elastic response of the
filament with the long-range hydrodynamic interactions of
low-Reynolds-number flow. For example, many workers
have solved for the flows generated by a prescribed motion
of thin filaments, such as the planar traveling bending waves
of sperm flagellaf7g, or the rotation of one or more rigid

helicesf8–10g. These approaches disregard the elasticity of
the filament, but use slender-body theoryf7,11g or related
techniquesf12g to accurately capture the hydrodynamic in-
teractions. A common alternative approach is to use Kirch-
hoff rod theorysor some generalizationd to model the elastic
nature of the filament, but to approximate the hydrodynamic
forces using resistive-force theoryf13–19g. In resistive-force
theory f20g, the force on a short segment of the filament is
proportional to the velocity of the segment, but the motion of
the fluid is otherwise ignored. Finally, there have been far
fewer analyses of flagellar motion that accurately treat both
the elastic and viscous parts of the problem. One of the ear-
liest is a comparison between resistive-force theory and
slender-body theory for a model of the active bending mo-
ments for a sperm flagellumf21g. These authors found that
resistive-force theoryswith suitably adjusted resistance coef-
ficientsd is accurate for a waving filament without a cell
body, but that slender-body theory is necessary for good ac-
curacy when the cell body is included. Recently, the bun-
dling of flexible bacterial flagella has been numerically simu-
lated using the method of regularized Stokesletsf22g.

In this article, we combine slender-body theory with
Kirchhoff rod theory to study a simple illustrative problem,
the deflection of a helical filament by flow. The combination
of slender-body theorysrather than resistive-force theoryd
with elasticity theory is an improvement over previous work.
Since we consider small deflectionsstoo small to trigger
polymorphic transformationsd, we work to first order in the
deformation. The small expansion parameter depends on the
problem. For example, for loading by hydrodynamic drag,
we expand inhvR2L /A, whereh is the viscosity,v is the
fluid velocity, R is the helical radius,L is the contour length
of the helix, andA is the bending stiffnessfsee Eqs.s25d and
s11d belowg. For characteristic orders of magnitude ofh
=10−3 N s/m2, v=10 mm/s, R=0.5 mm, L=10 mm, andA
=10−24 N m2, hvR2L /A is a fraction of a percent, justifying
our approximation. Thus, to leading order in the small pa-
rameter, the flow is that generated by the undeformed helix,
but the deformation depends on the flow. In addition to al-
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lowing a quantitative assessment of the accuracy of resistive-
force theory as the helix shape varies from close- to open-
coiled ssmall to large pitchd, our calculation can be used to
determine the stiffness of the bacterial flagellar filament.

Measurements of filament elasticity vary over a wide
range. Fujime, Maruyama, and Asakura used light scattering
to find a bending stiffnessA<s2−4d310−24 N m2 for Sal-
monella typhimuriumfilamentsf23g. Later, Hoshikawa and
Kamiya measured the extension of anS. typhimuriumfila-
ment subject to flow along the helix axis to find a shear
modulus of 1010 N/m2 f24g. For a rod with radiusa
=10 nm, this shear modulus corresponds to a twist modulus
C<10−22 N m2 f25g. Using electron micrographs of isolated
filaments, Trachtenberg and Hammel reported Young’s
moduli ranging from E<1.0431010 N/m2 to E<1.77
31011 N/m2 for a variety of filament types. For a radiusa
<10 nm, these values correspond to a range of bending stiff-
nesses fromA<8310−23 N m2 to A<1310−21 N m2 f26g.
More recently, Takano and co-workers estimatedA
<10−24 N m2 for Vibrio alginolyticusby examining the de-
formation of the filament of a swimming bacteriumf19g.
Motivated by these discrepancies, and by recent advances in
fluorescent labeling of the filament ofE. coli f6g, we revisit
the calculation of the extension of a filament due to axial
flow. Our calculation differs from that of Hoshikawa and
Kamiya, since we use Kirchhoff rod theory instead of mod-
eling the filament as a sequence of beads, and since we use
slender-body hydrodynamics instead of resistive-force
theory. We show that resistive-force theory is highly inaccu-
rate for the close-coiled flagella studied by Hoshikawa and
Kamiya. Applying the results of the slender-body theory cal-
culation to the data off24g, and assumingC=A, we estimate
A<3310−24 N m2.

We also present a calculation of the compression of a
rotating flexible helix. This calculation is closely related to
the calculations of Takano and co-workersf18,19g, with two
important differences:sid our calculation is valid for a helix
rotated by a stationary motor, whereas Takanoet al. include
the effect of translation due to swimming, andsii d we incor-
porate hydrodynamic interactions in our slender-body theory
computation. We show that for an open-coiled helix,
resistive-force theory gives a modest error for the force per
unit length. Therefore, our calculations lend further support
to those of Takanoet al. Since our calculations neglect the
disturbance of the flow due to nearby walls or the cell body,
our estimate of the bending stiffness is still only accurate
within an order of magnitude. The purpose of these calcula-
tions is to describe our method in a simplified setting.

Since biological filaments are often polarizable by electric
f27g or magneticf28g fields, we also study the deformation
of a filament in an external field. In the case of an electric
field, we assume the filament is uncharged, or, if charged,
subject to a rapidly oscillating ac electric field. Thus, unlike
viscous drag, which amounts to distributed loading by an
external force per unit length, the induced polarization leads
to distributed loading by an externalmomentper unit length.
We show that to first order in the deflectionsthe small ex-
pansion parameter in this case isxaR

2E2/A, wherexa is the
anisotropy in the susceptibility per length andE is the elec-
tric fieldd, the moment balance equations for the external

field problem are equivalent to the equations for a helix in no
field but subject to end-loading by forces only. Although we
focus on bacterial flagella, our calculations are applicable to
the deflection of any flexible helical filament.

The first section of the body of this article describes the
model. We review the geometry of a helix and introduce the
material frame. Then we describe the constitutive relations
for a helical filament, resistive-force theory, and slender-
body hydrodynamics. This section closes with the formula-
tion of the equations for a thin polarizable filament in an
external field. The next section presents the results. We give
explicit formulas for the deflection of a helix in axial and
rotational flow using resistive-force theory for a helix with
many turns. Then we compute the deflection for an open-
coiled and a close-coiled helix using slender-body theory,
and compare with resistive-force theory. In the last part of
this section, we present the results of the calculation of a
polarizable helix in a field. The final section discusses the
application of our results to experiments and offers some
conclusions. The Appendix describes the details of the cal-
culations of the deformations.

II. MODEL

A. Geometry

Consider a helix of radiusR and pitchP, with its axis
aligned along thez axis ssee Fig. 1d,

r szd = „Rcoss2pz/Pd,Rsins2pz/Pd,z…. s1d

For fixed contour lengthL, the shape of the helix is com-
pletely specified byR/L and the pitch anglea, where
tana=2pR/P. sNote that the pitch angle changes sign under
reflection.d Equivalently, the helix is specified by its curva-
turek and torsiont, which are defined by the rates of change
of the Serret-Frenet framef29g,

]

]s1n̂

b̂

t̂
2 = 1 0 t − k

− t 0 0

k 0 0
21n̂

b̂

t̂
2 , s2d

wheres=zÎ1+4p2R2/P2 is arc length,t̂ ;]r /]s is the tan-

gent, n̂ is the normal, andb̂= t̂ 3 n̂ is the binormal. Inspec-

FIG. 1. sad A helix with pitch P and radiusR. sbd One turn of a
helix “unrolled,” showing the pitch anglea, and the orientation of

the Serret-Frenet frameht̂ ,n̂ ,b̂j.
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tion of Fig. 1sbd reveals thatt̂ =cosaẑ+sinaŵ, and thusn̂
=−r̂ and b̂=−cosaŵ+sinaẑ, wherew;2pz/ uPu andr are
cylindrical polar coordinates. These formulas with Eq.s2d
imply that a helix has curvaturek0=sin2 a /R and torsion
t0=cosa sina /R, where the subscripts denote the absence
of external stress.

B. Material frame

Now consider an elastic rod. In addition to the curvature
and torsion of the rod centerline, there is a new degree of
freedom, the twistsfor simplicity we forbid stretching of the
centerline and relative shear between nearby cross sectionsd.
To describe these degrees of freedom, define a right-handed
orthonormal material framehê1,ê2,ê3j such thatê1 and ê2

align along the principal axes of the rod cross section, and
ê3= t̂ f25g. Since this frame is amaterial frame, the frame
rotates with the material as the rod bends and twists—we can
think of the vectors as being embedded in the material. The
twist V3 is the rate at whichê1 rotates aboutê3 as s in-
creases, and the two components of curvature of the rod
centerline,V1 andV2, are the rates at whichê3 rotates about
ê1 and ê2, respectively, ass increasesssee Fig. 2d. The local
angular velocityv of the frame at a givens is defined in a
similar way; thus

]êi

]s
= V 3 êi , s3d

]êi

]t
= v 3 êi . s4d

The vectorV=V1ê1+V2ê2+V3ê3 is related to the instanta-
neous strain in the rod.

Note that if the cross section is circular, then there are
many equivalent choices for the direction ofê1. Assuming a
circular cross section for the naturally helical rod, we choose

hê1,ê2j to align with hn̂ ,b̂j in the absence of external forces
and moments.sFor small perturbations to a helix, the Serret-
Frenet frame is always well-defined; seef30–32g for discus-

sions of thenatural frame which is well-defined even at
points wherek=0.d When forces and moments are applied to
the filament, both the Serret-Frenet frame and the material
frame at each point rotate, but not necessarily by the same
amount. GivenV, the material frame is determined by inte-
grating Eq.s3d. Integration ofê3 yields the shaper ssd. The
details of these integrationssfor small deflectiond are de-
scribed in the Appendix.

C. Constitutive relations

The rate of rotationV of the material frame defines the
shape of an elastic rod. LetVs0d denote the rate of rotation in
the absence of external forces and moments. Then the linear
constitutive relation,

M = AsV1 − V1
s0ddê1 + BsV2 − V2

s0ddê2 + CsV3 − V3
s0ddê3,

s5d

determines the momentM of elastic stresses acting on a
cross section with outward normalê3 at s f25g. Since we
consider helices with circular cross sections,A=B. Compari-
son of Eq.s2d and Eq.s3d when the filament is undeformed
shows thatV1

s0d=0, V2
s0d=k0, andV3

s0d=t0. Thus,

M = AfV1ê1 + sV2 − k0dê2g + CsV3 − t0dê3. s6d

We make one final simplification of the constitutive relations
by settingC=A. For a rod made from an isotropic linearly
elastic material,C/A=2m /E=1/s1+nd, wherem is the shear
modulus,E is the Young’s modulus, andn is the Poisson
ratio f25g. For an ordinary material, 0ønø1/2; therefore,
C/A lies in the narrow range between 2/3 and 1.

The internal elastic stresses exert a forceF as well as a
momentM on the cross section ats. Balancing the forces
and moments on an element of the rod of lengthds leads to

]F

]s
+ K = 0, s7d

]M

]s
+ t̂ 3 F + N = 0, s8d

whereK is the external force per unit length andN is the
external torque per unit lengthf25g.

D. Hydrodynamic drag

For a flagellum, the external forces and moments arise
from hydrodynamic drag. In this article, we will compare
resistive-force theory and slender-body theory. In resistive-
force theoryf20g, the drag force per unit length is propor-
tional to the local rod velocityv relative to the fluid velocity
far from the rod,

K = − z'fv − st̂ ·vdt̂g − zist̂ ·vdt̂ . s9d

This expression asymptotically approaches the exact relation
as the radiusa becomes much smaller than the rod’s length
or typical radius of curvaturel f33g. In this limit, the resis-
tance coefficients take the form

FIG. 2. sad The material frame for a straight and untwisted rod.
sbd The material frame for a straight rod with right-handedsposi-
tived twist; ê1 and ê2 rotate aboutê3 ass increases.
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z' , 4ph/lnsl/ad, s10d

zi , 2ph/lnsl/ad, s11d

whereh is viscosity anda is the filament diameter. The force
per unit length is anisotropic, with the resistance to motion
tangential to the rod half the resistance of motion perpen-
dicular to the rod. Note that replacingl by 2l in Eqs.s10d
and s11d merely leads to subdominant additive terms in the
denominator. Since the ratioa/l<10−3 for a real flagellum,
the asymptotic limit of Eqs.s10d and s11d, in which
lnsl /ad@1, is not attained in practice. Therefore, various
authors have proposed different values for the resistance co-
efficientszi andz', depending on the shape of the flagellum
and its motionf7,11,20,34g. Nevertheless, since we are only
using resistive-force theory to build intuition and to compare
with slender-body theory, we will use Eqs.s10d ands11d with
l=R/sinsad, the periodicity of the helix measured along the
arc length.

The viscous moment per unit length resisting the rotation
of an element of the rod aboutt̂ is

N = − zrst̂ · vdt̂ , s12d

wherezr =4pha2 is the rotational drag coefficient. This mo-
ment may be safely neglected for a helix of radiusR@a,
since the contributions to moment balance, Eq.s8d, from N
are smaller than the leading contributions from the transla-
tion of rod elements by a factor ofsa/Rd2.

Resistive-force theory is simple to use, but as we will see,
it is not always accurate. Furthermore, resistive-force theory
makes no prediction for the disturbance flow induced by a
moving flagellum. Slender-body theory overcomes both of
these defects. In slender-body theory, the flow induced by a
moving flagellum is approximated by the flow induced by a
line of singular solutions to the Stokes equationssthe equa-
tions of flow at zero Reynolds numberd for the fluid velocity
u,

h¹2u − = p = 0, s13d

= ·u = 0. s14d

One of the singular solutions is the Stokeslet,uisxd=Sijsx
−x8df j, which is the flow atx generated by a point forcef at
x8. To determine the Stokeslet tensorSij , we solve the Stokes
equationss13d and s14d with a point force,

h¹2sSij f jd − =ip + f idsx − x8d = 0 s15d

]

]xi
Sij = 0, s16d

to find

Sijsyd =
di j

uyu
+

yiy j

uyu3
, s17d

with y;x−x8 f7,11g. The other singular solution is the dou-
blet uisxd=Dijsx−x8dgj, which is the flow atx induced by a
dipole source of strengthg at x8. The doublet tensor is

Dij =
di j

uyu3
+

3yiy j

uyu5
, s18d

again with y;x−x8. Just as in resistive-force theory, the
contribution to the flow from the rotation of each segment of
the filament about its tangent vector is subleading. Since the
Stokes equations are linear, the flow is given by a superpo-
sition of these solutions, weighted by the force per unit
length −K ssd of the flagellum on the fluidf7g,

uisxd = − o
j
E dsFSijKj

8ph
−

a2DijK' j

16ph
G . s19d

In Eq. s19d, K '=K −st̂ ·K dt̂, Sij and Dij are evaluated atx
−r ssd, andr ssd is the flagellum centerline.

Since the helix is flexible, there will be a disturbance flow
of OshvR2L /Ad due to the deformation of the filament. How-
ever, the leading-order flow isOs1d. Therefore, to calculate
the deformation of the filament to first order inhvR2L /A, we
only need to consider the flow generated by a rigid helix.
Furthermore, only the force per unit lengthK , and not the
flow u, is required to compute the deformation. Our calcula-
tions are similar to but simpler than those of our previous
work f10g, where we studied the forces and flows generated
by two rotating rigid helices.

To solve for force per unit length, we discretize Eq.s19d,
approximating the filament with a series of short straight
segmentsf10g. We work in the frame for which the fluid
velocity vanishes far from the filament; thus, the velocity of
the filament isv=vẑ for the case of translation andv=vẑ
3 r ssd for the case of rotation. Note that there are no ficti-
tious forces in the rotating frame at zero Reynolds number.
Given the velocity at the filament, we enforce the no-slip
boundary condition at a point just at the surface in the middle
of each straight segment,xa=r ssad+an̂ssad, wherea labels
the segments andn̂ssd is the unit normal vector ats. The
nonzero filament radiusa prevents the singular solutions
from diverging. Combining the no-slip condition with the
discretized form of Eq.s19d yields a set of linear equations
for the force per unit length,

via = o
jb

Qia,jbKjb, s20d

wherevia is the velocity atxa andKjb=Kjssbd. The matrixQ
is found by integrating the Stokeslet and doublet solutions
along over the segments; explicit formulas forQ are given
by Higdon in f7g.

E. Polarizable filaments

In this subsection we use the notation of electric polariz-
ability, but the formulas apply equally well to the case of
magnetic polarizability. For simplicity, we assume the optical
axis of the filament aligns with the tangent vectort̂. The
induced polarization per unit length then has the form

p = x'fE − st̂ ·Edt̂g + xist̂ ·Edt̂ , s21d

wherex' is the susceptibility for polarization normal tot̂, xi

is the susceptibility for polarization alongt̂, and E is the
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external electric field. Thus, the torque per unit length acting
on the filament is

N = p 3 E = xast̂ ·Edst̂ 3 Ed, s22d

wherexa;xi−x' is the anisotropy in the susceptibility per
unit length.

III. RESULTS

Before stating our results for the deformation of a helix
under distributed loading, it is useful to recall how a helical
spring deforms when subject to end loading. The deforma-
tion depends strongly on how the ends of the spring are held.
We will suppose that one end of the spring,s=0, is clamped
with r s0d=0 and]r /]ss0d=cosaẑ+sinaŵ. fHinged bound-
ary conditions, such asM ·n̂=0 at s=0, are not considered
since they would allow the helical axis to rotate aboutn̂s0d,
leading to large displacements.g A common choice for the
other end,s=L, is to have the line of action of the forceF
=Fẑ coincide with the helical axisẑ. This condition leads to
a momentM =RFŵ at s=L, where the origin for the moment
is 0. For C=A, the extension of the helix to first order in the
dimensionless forceFR2/A is

dz1sLd
L

=
FR2

A
H1 −

R

L

sinfsL/Rdsinag
sina

J . s23d

Note that Eq.s23d exhibits the proper limit asa→0 for fixed
R. In this limit, the undeformed rod is parallel to thez axis.
Since the rod is inextensible, the force does not lead to an
increase in the contour length. Since there is still a moment
acting ats=L, the rod deflects; however, the component of
this deflection in thez direction is second order in the dimen-
sionless force, anddz1sLd=0. Note also the oscillations in
dz1sLd sfor fixed L and as a function ofa, sayd arising from
the second term on the right-hand side of Eq.s23d. These
oscillations become negligible whenR/L!1, indicating that
they are an artifact of the boundary conditions. For large
L /R, we recover the familiar resultsfor C=Ad dz1sLd
=FR2/A f35g.

SinceM sLd=0 in all of our distributed loading problems,
it is more appropriate to make comparisons with an end-
loading problem in which the line of action of the forceF

=Fẑ passes through the origin, so thatM sLd=0. The deflec-
tion in this case is twice as large,

dz2sLd
L

= 2
FR2

A
H1 −

R

L

sinfsL/Rdsinag
sina

J . s24d

To see how Eqs.s23d ands24d are derived, see the Appendix.
For distributing loading by viscous drag, the total force on

the filament increases with contour length:F~hvL, wherev
is the characteristic flow velocity. Therefore, using the
asymptotic form of the resistive-force coefficients of Eqs.
s10d and s11d for simplicity, dimensional analysis implies
that the extension of a helix in axial flow obeys

dztsLd
L

=
zivR2L

A
f tsa,R/Ld, s25d

and the extension of a helix rotating with angular speedv in
a viscous fluid obeys

dzrsLd
L

=
zivR3L

A
f rsa,R/Ld, s26d

wheref t and f r are dimensionless functions, the “t” subscript
stands for “translation,” and the “r” subscript stands for “ro-
tation.” In the Appendix, we also calculate the extension of a
helix hanging under its own weight.

For distributed loading of a polarizable filament by an
external fieldE=Eẑ, the moment per unit length is aligned
with r̂, and has noẑ componentfsee Eq.s22dg. Integrating
dM /ds+N=0 therefore leads to a total moment that scales
with R, not L: M ~xaE

2R. Therefore, the extension obeys

dzfsLd
L

=
xaE

2R

A
f fsa,R/Ld, s27d

where the “f” subscript stands for field. To summarize, we
have shown that for a rod in a flow, the extensiondz is
proportional toL2; for a rod polarized by an external field,
the extensiondz is proportional toL.

A. Resistive-force theory

The Appendix gives the details of the calculation off t, f r,
and f f. First we discuss the calculation of extension by drag
using the resistive-force theory approximation. The calcula-

FIG. 3. Dimensionless extensionf t vs pitch anglea for a helix
with four turns,R=0.22mm, andP=2.4 mm, subject to axial flow.
The hydrodynamic forces are calculated using resistive-force
theory. The solid line is calculated using the exact expression forf t,
and the dotted line isf t=1, the approximate dimensionless exten-
sion to leading order inR/L.

FIG. 4. Dimensionless extensionf r vs pitch anglea for a helix
with four turns,R=0.22mm, andP=2.4 mm, subject to rotational
flow. The solid line is calculated using the exact expression forf r,
and the dotted line isf r=cota, the approximate dimensionless ex-
tension to leading order inR/L.
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tion can be carried out analytically, but the full expression is
too lengthy to give here. SinceL /R<50 for a normalE. coli
filament fR=0.22mm, P=2.4 mm f6g, Fig. 5sadg with four
turns, the leading terms off t and f r in an expansion inR/L
give a very good approximation. For a helix immersed in a
uniform flow in the positivez direction, we find

dztsLd
L

=
zivR2L

A
f1 + OsR/Ldg. s28d

For a helix rotating with angular velocityv=vẑ,

dzrsLd
L

=
zivR3L cota

A
f1 + OsR/Ldg. s29d

When C=A, the extension of a helix due to axial flow, Eq.
s28d, is independent of the pitch anglea, just as in the case
of end-loading, Eq.s23d. In particular, the sign of the exten-
sion is independent of the handedness of the helix. On the
other hand, the sign of the extension of a rotating helix de-
pends on the handedness: a left-handed helixsa,0d rotating
counterclockwise when viewed from the ends=L sv.0d
will compressfdzrsLd,0g. Note that the effect of neglecting
the subleading terms inR/L is to ignore the effects of bound-
ary conditions. Equationss28d ands29d cannot be correct for
all a, since inextensibility of the filament implies that the
extension must vanish asa→0 for fixedR. The terms which
are subleading inR/L are precisely the terms which cause
the deflection to vanish for smalla, and they also lead to
oscillations indz as a function ofa. Figures 3 and 4 show
the dependence off t and f r on a using formulas computed
without assumingR/L!1 ssee the Appendixd, for the case of
L /R=50. Only the range froma=0 toa=p /2 is shown;f t is
even in a, and f r is odd in a. A normal filament hasa
<0.52 rad<0.33p /2 rad, which is in the region where the
oscillations are relatively small.

B. Slender-body theory

Resistive-force theory fails to properly account for the
long-range hydrodynamic interactions among the different

elements of a slender body. The slender-body theory dis-
cussed in Sec. II accounts for these interactions, and gives a
more accurate value for the external drag force per unit
lengthK . Figure 5 showsK for a rotating helix with an open
coil sthe normal helix parameters given aboved, calculated by
resistive-force theory and slender-body theory. The two cal-
culations agree very well for the normalsK1d component,
with significant differences for the other two components. A
much greater difference between the two theories is shown in
Fig. 6, which displays the components of the drag forces per
unit length for a close-coiled helix in axial flow. Each coil
obstructs the flow to the next coil. Since slender-body theory
accounts for this effect but resistive-force theory does not,
the component of the force per unit length along the flow

direction ẑ·K < b̂ ·K is substantially smaller in slender-body
theory than in resistive-force theory.

Since the drag forces per unit lengthK must be computed
numerically in slender-body theory, we numerically integrate
to find the deflection of the endssee the Appendixd. Our
results are summarized in Table I. There is a fortuituous can-
cellation of errors leading to an accurate estimate fordzsLd
for a rotating normal helix. The resistive-force theory esti-
mate is reasonably good for a normal helix subject to axial
flow. However, the error made by resistive-force theory is
large for a close-coiled helix.

C. Estimation of bending stiffness

We can use the results of the preceding subsections to
make estimates for the bending stiffness of bacterial flagellar

FIG. 5. The viscous drag force per unit lengthK , in units of
Rhv, for an open-coiled helix rotating with speedv vs arc lengths
in units ofL. The filament radius isa=0.01mm, the helix radius is
R=0.22mm, the pitch isP=2.4 mm, and the total arc length isL
<11 mm.

FIG. 6. The viscous drag force per unit lengthK , in units ofhv,
for a close-coiled helix subject to axial flow with speedv vs arc
lengths in units ofL. The helix parameters are taken fromf24g: the
filament radius isa=0.01mm, the helix radius is 0.6mm, the pitch
is 0.5mm, and the total number of turns is 11.5.

TABLE I. The ratio of the extension computed by slender-body
theory to the extension computed by resistive-force theory,
dzSBTsLd /dzRFTsLd, for an open-coiled helix and a close-coiled
helix.

Flow Open coil Close coil

axial 0.7869 0.2362

rotational 0.9917 0.3742
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filaments. First consider the compression of a rotating helix
due to viscous drag. Suppose that the body of the bacterium
is held fixedsas when the cell is adhered to a glass cover
slided, so that there is no external axial flow. The flagella of
E. coli rotate at 100 Hz; it has been observed by Berg and
collaborators that there is no noticeable difference in the
axial length of rotating and de-energized flagellaf36g. Thus,
the change in axial length must be less than their experimen-
tal uncertainty of 0.2mm. Taking the viscosity of water to be
10−3 N s/m2, and using Eq.s11d for zi, we find that the bend-
ing stiffnessA for a normal filament must satisfyAù1.0
310−24 N m2. Using slender-body theory for this estimate
leads to the same bound,Aù1.0310−24 N m2. Although our
bound is consistent with the estimate off19g, A
<10−24 N m2, the more important implication of our calcu-
lation is that resistive-force theory is reasonably accurate for
this geometry.

We can apply our calculation of the extension of a flexible
helix in axial flow to the data of Hoshikawa and Kamiya,
who used optical microscopy to record the deflection of a
detachedS. typhimuriumfilament in an external flowf24g.
They used a bead and spring model to determine the bending
stiffness. As mentioned in the Introduction, our model differs
from theirs since we treat the filament as a continuum, and
we use the slender-body theory to account for long-range
hydrodynamic interactions. This last difference is crucial,
since neglecting these interactions will lead to an overesti-
mate of the bending stiffness. Although Hoshikawa and Ka-
miya observed large deflections, they found that the exten-
sion was linearly proportional to the speed of the external
flow; the filament behaved like an ideal spring. Therefore,
our small-deflection calculation should accurately capture
the slope of the extension-velocity curve. Using their data
from f24g and our resistive-force theory equations yieldsA
=1.4310−23 N m2; with the slender-body theory, the esti-
mate isA=3.2310−24 N m2.

D. Polarizable filament in an external field

An external electric field tends to align the tangent vector
of a flagellar filament with the field direction. For example,
straight polymorphic filaments align along the field, but
close-coiled forms align with the helical axis perpendicular
to the fieldf27g. The same effect will tend to unwind a flex-
ible helical filament with a pitch intermediate between these
two extremes. The helix will extend independent of its hand-
edness, with the extension vanishing fora=0 sstraightd and
a=p /2 sclose-coiledd. Following the approach outlined in
the Appendix, we find

dzfsLd
L

=
2R2xaE

2

A
Fcosa −

R

L
cota sinSL sina

R
DG .

s30d

The graph ofdzfsLd /L versusa is shown in Fig. 7. Washizu
et al. report an induced dipole moment of 5310−24 C m for
a flagellar filament in a field ofE=106 V/m f27g. Since the
filament is charged, the field oscillates at high frequency to
keep the filament from moving. Assuming a filament of
length 10mm, this dipole moment corresponds to a suscep-

tibility of xa<5310−25 C m/V. For these values andR
=0.2 mm andA<10−24 N m2, we expect a small deflection
proportional toR2xaE

2/A<0.02.

IV. CONCLUSION

In this article, we have calculated the deflection of helical
filaments due to flow and external fields, placed a bound on
the bending stiffness ofE. coli flagellar filaments, and rein-
terpreted the data of Hoshikawa and Kamiya forS. typhimu-
rium using slender-body hydrodynamics. These estimates
could be refined by carrying out new experiments using fluo-
rescent labeling of flagellar filamentsf6g and subjecting them
to various external loading conditions. For example, one end
of a detached filament could be stuck to a magnetic bead
turning rapidly enough to lead to a greater compression than
that attained by a filament driven byE. coli’s flagellar motor.
Likewise, one end of a detached fluorescent filament could
be held in a uniform flow, as in the work off24g. A third
class of experiments would be to subject fluorescent fila-
ments to an ac electric field, analogous to the dark-field ex-
periments off27g. In each of these three experimental situa-
tions, it has been shown that sufficiently great loading will
lead to polymorphic transformations. Therefore, before gen-
eralizing the linear theory described here to handle large de-
flections, the next challenge is to incorporate polymorphism
into the elastic theory.

Note added in proof. Recently, we became aware of the
calculations of Flynn and Maf37g. These authors find that
C/A is approximately 22.7 for the filament. Such a ratio does
not lead to qualitative changes in our results, but would lead
to an order of magnitude estimate ofC of approximately
10−24 N m2 from our slender-body calculations and the data
of f24g.
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APPENDIX A: CALCULATION OF DEFORMATION

Consider a helical filament of lengthL with one endsat
s=0d clamped and the other endsat s=Ld free. We will study
the steady-state deformation when the helix is subject to ex-
ternal loading. First we describe the general approach, then
we consider the particular cases of end-loading, loading by
flow, and loading by external field. We work to first order in
the loadingsthe dimensionless parameters characterizing the
magnitude of the loading are given belowd. Since the exter-
nal force per unit lengthK vanishes when the load vanishes,
Ki = êi ·K < êi

s0d ·K , where the errors are second order in the
loading. A similar conclusion holds forNi, Fi, andMi. Thus,
the components of the force balance equation, Eq.s7d, to
leading order are

dF1

ds
− t0F2 + k0F3 + K1 = 0, sA1d

dF2

ds
+ t0F1 + K2 = 0, sA2d

dF3

ds
− k0F1 + K3 = 0, sA3d

where we have used Eq.s3d for the rate of change of the
undeformed frame:dêi

s0d /ds=Vs0d3 êi
s0d. Since the end ats

=L is free, the boundary conditions for these equations are
FisLd=0 for the cases of loading by drag and external field.

Equations of the same form as Eqs.sA1d–sA3d appear
several places in our analysis. The general solution is given
by

F1 = C0 sinsssd + sinsssd/sE ds8 cossss8dP

− cossssd/sE ds8 sinsss8dP, sA4d

F2 =E ds8sK2 − t0F1d, sA5d

F3 =E ds8sK3 + k0F1d, sA6d

wheres=Îk0
2+t0

2=sinsad /R, P=st0K2−k0K3+dK1/dsd, and
the integration constantC0 is determined by substituting the
expressions for theFi from Eqs.sA4d–sA6d into Eq. sA1d.

The components of the moment balance equation, Eq.s8d,
to leading order are

dM1

ds
− t0M2 + k0M3 − F2 + N1 = 0, sA7d

dM2

ds
+ t0M1 + F1 + N2 = 0, sA8d

dM3

ds
− k0M1 + N3 = 0 sA9d

with MisLd=0 for the cases of loading by drag and external
field.

Once the moment is found by formulas analogous to Eqs.
sA4d–sA6d, the strain vectorV is determined by the consti-
tutive relation, Eq.s6d. Let dV;V−Vs0d; then, since we
assumeC=A,

dVi ; êi · dV = êi
s0d · dV = Mi/A. sA10d

The next step is to integrate Eq.s3d to find êi = êi
s0d+dêi; to

first order, Eq.s3d is

dsdêid
ds

= Vs0d 3 dêi + dV 3 ês0d. sA11d

Solving Eq.sA11d amounts to finding the rotation which car-
ries the frameêi

s0dssd to the frameêissd. Since the deforma-
tion is small, this rotation is close to the identity, and

dêi = Jij êj
s0d, sA12d

where Jij is an antisymmetric matrixfnote that Eq.sA12d
properly ensures thatdêi ·êi

s0d=0g. In terms ofJij , Eq. sA11d
is

dJij

ds
= ei jksdVk + Vl

s0dJlkd, sA13d

whereei jk is the totally antisymmetric symbol. IfJi =ei jkJjk,
then Eq.sA13d becomes

dJ1

ds
− t0J2 + k0J3 = dV1, sA14d

dJ2

ds
+ t0J1 = dV2, sA15d

dJ3

ds
− k0J1 = dV3. sA16d

We assume clamped boundary conditions ats=0, so that
êis0d= êi

s0ds0d, or Jis0d=0. Once Eqs. sA14d–sA16d are
solved, the tangent vector is given by

ê3 = ê3
s0d + J2ê1

s0d − J1ê2
s0d. sA17d

Finally, to find thez component of the deflection of the free
end, we integrate,

dzsLd =E
0

L

ds8ẑ · dê3 = −E
0

L

ds8J1 sina. sA18d

The choice of lower limit in the integral of Eq.sA18d en-
forces the boundary conditionzs0d=0.

We now apply these equations to the particular cases dis-
cussed in the body of this article.

1. End-loading

This case is classical and is included only for comparison.
One end of the rod is subject toF=Fẑ. Since there is no
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external force per unit length, the force acting on each cross
section of the rod is constant:Fssd=Fẑ. We work to first
order inFR2/A. As discussed in the text, there are two cases,
depending on the line of action ofF. Consider first the case
in which the line of action ofF is the axis of the helix. Then
the force contributes a moment about the origin of the rod,
r s0d=0. Solving the moment equations, Eqs.sA7d–sA9d,
with the constant force andNi =0 leads toM1=−FRcosa,
M2=FRsina, andM3=0. Using these moments to compute
dê3 anddzsLd leads to Eq.s23d.

If the line of action of F is parallel to thez axis but
passing through the origin, then there will be no moment at
s=L. This change in the boundary conditions leads to mo-
ments that depend ons,

M1 = RFcosa sinfsss− Ldg, sA19d

M2 = RFst0/sdcosahcosfsss− Ldg − 1j, sA20d

M3 = RFsk0/sdh1 − cosfsss− Ldgj. sA21d

Integrating these moments using our general approach to find
dzsLd leads to Eq.s24d.

2. Loading by hydrodynamic drag

In this case we work to first order inhvLR2/A. In
resistive-force theory, the force per unit length acting on the
rod is uniform for axial flow,

K1
t = 0, sA22d

K2
t = 2ziv sina, sA23d

K3
t = zi cosa, sA24d

and also for rotational flow,

K1
r = 0, sA25d

K2
r = 2ziv cosa, sA26d

K3
r = − ziv sina, sA27d

wherev=vR in Eqs.sA25d–sA27d.
The force per unit length for a helix hanging under its

own weightsor a charged helix in a dc electric fieldd is also
uniform, and easily handled by our method. Thus, we also
consider a helix to an isotropic force per unit lengthK =wẑ,

K1
w = 0, sA28d

K2
w = w sina, sA29d

K3
w = w cosa. sA30d

Solving Eqs.sA1d–sA3d for uniform Ki, we find

F1 =
Kw

s
h1 − cosfssL − sdgj, sA31d

F2 =
Kzk0

s
sL − sd −

Kwt0

s2 sinfssL − sdg, sA32d

F3 =
Kzt0

s
sL − sd +

Kwk0

s2 sinfssL − sdg, sA33d

whereKw=−K2 cosa+K3 sina and Kz=K2 sina+K3 cosa.
Note thats is the periodicity of the helix measured along its
arc length. Integrating the moment equations, Eqs.sA7d and
sA8d, with these forces results in

M1 = − st0Kw + k0Kzdh1 − cosfssL − sdgj/s3

+ t0KwsL − sdsinfssL − sdg/s2, sA34d

M2 = k0sk0Kw − t0KzdsL − sd/s3 + fk0t0Kz

+ st0
2 − k0

2dKwgsinfssL − sdg/s4

− t0
2KwsL − sdcosfssL − sdg/s3, sA35d

M3 = k0st0Kw + k0KzdsL − sd/s3 − s2k0t0Kw + k0
2KzdsinfssL

− sdg/s4 + k0t0KwsL − sdcosfssL − sdg/s3. sA36d

For the case of viscous drag, these moments lead to the ex-
tensions of Eqs.s28d ands29d, shown in Figs. 3 and 4. For an
isotropic external force per unit length, Eqs.sA28d–sA30d,
the extension to leading order inR/L is

dzwsLd
L

=
wR2L

2A
fwsa,R/Ld. sA37d

Figure 8 shows the extension to all orders inR/L for a helix
with four turns and the pitch and radius of a normal flagellar
filament.

For the slender-body calculation of the deformation of a
helix in axial or rotational flow, we use Eq.s19d to solveK ,
and then numerically integrate to eventually finddzsLd.

3. Loading by external field

In this case, the external force per unit length vanishes,
implying F=0. But the field exerts a moment per unit length
on the filament; forE=Eẑ, the only nonvanishing component
of N is N1=xaE

2Rcosa sina fsee Eq.s22dg. Here the small

FIG. 8. Dimensionless extensionfw vs pitch anglea for a helix
with four turns,R=0.22mm, and P=2.4 mm, subject to external
force per unit lengthK =wẑ. The solid line is calculated using the
exact expression forfw, and the dotted line isfw=1/2, theapproxi-
mate dimensionless extension to leading order inR/L.
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parameter isxaE
2R2/A. Solving Eqs.sA7d–sA9d for this case

leads to

M1 = RxaE
2 cosa sinfsss− Ldg, sA38d

M2 = RxaE
2st0/sdcosahcosfsss− Ldg − 1j, sA39d

M3 = RxaE
2sk0/sdh1 − cosfsss− Ldgj. sA40d

Note that this moment has the same functional form as the
moment for end-loading, Eqs.sA19d–sA21d, which explains
why the extension due to an external field, Eq.s30d, has the
same dependence onL as in Eq.s24d.
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