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Deformation of a helical filament by flow and electric or magnetic fields
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Motivated by recent advances in the real-time imaging of fluorescent flagellar filaments in living bacteria
[Turner, Ryu, and Berg, J. BacterioB2, 2793 (2000], we compute the deformation of a helical elastic
filament due to flow and external magnetic or high-frequency electric fields. Two cases of deformation due to
hydrodynamic drag are considered: the compression of a filament rotated by a stationary motor and the
extension of a stationary filament due to flow along the helical axis. We use Kirchhoff rod theory for the
filament, and work to linear order in the deflection. Hydrodynamic forces are described first by resistive-force
theory, and then for comparison by the more accurate slender-body theory. For helices with a short pitch, the
deflection in axial flow predicted by slender-body theory is significantly smaller than that computed with
resistive-force theory. Therefore, our estimate of the bending stiffness of a flagellar filament is smaller than that
of previous workers. In our calculation of the deformation of a polarizable helix in an external field, we show
that the problem is equivalent to the classical case of a helix deformed by forces applied only at the ends.
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[. INTRODUCTION helices[8-10]. These approaches disregard the elasticity of
] i ) ] ) ] the filament, but use slender-body thedi11] or related
Many micro-organisms swim using thin, flexible flagella. techniqueq12] to accurately capture the hydrodynamic in-
For example, a mammalian sperm cell swims by sendingeractions. A common alternative approach is to use Kirch-
traveling waves of bending down its flagellur]. At these  hoff rod theory(or some generalizatiorio model the elastic
micron length scales, the inertia of both the cell and the fluichature of the filament, but to approximate the hydrodynamic
is unimportant and viscous effects dominate: the Reynoldforces using resistive-force thedr¥3—19. In resistive-force
number is very low. At zero Reynolds number, reciprocaltheory[20], the force on a short segment of the filament is
motions like the waving of a rigid oar generate zero netproportional to the velocity of the segment, but the motion of
translation per perio@i2]. Thus, the flexibility of the sperm the fluid is otherwise ignored. Finally, there have been far
flagellum is crucial for motion. Another example where thefewer analyses of flagellar motion that accurately treat both
flexibility of the flagellum is important is the chemotaxis of the elastic and viscous parts of the problem. One of the ear-
the bacteriumEscherichia coli[3]. These cells use several liest is a comparison between resistive-force theory and
rotating helical flagella to swim. Each flagellum must be stiff Slender-body theory for a model of the active bending mo-
enough to hold its helical shape when subject to viscougn€nts for a sperm flagelluii2l]. These authors found that

stresses: if the flagellar filaments were too flexible, th(__,);esistive-force theorywith suitably adjusted resistance coef-

would twist and bend as they rotate and fail to generate proliCi€NtS is accurate for a waving filament without a cell

pulsive force. On the other hand, if the filaments were toobOdy’ but that slender-body theory is necessary for good ac-

: : . : ., curacy when the cell body is included. Recently, the bun-
;ﬂfsfhteie?hg Vggl?lglgﬁér]np;ﬁzflfhéo ﬁf; rnTetrn(se ibnur;dlre(z)t\gtri]:éh dling of flexible bacterial flagella h_as been numerically simu-
bundle must continuously deforfs]. Furthermore, the fila- lated using the method of regularized Stokesfed.

o . ) In this article, we combine slender-body theory with
ments must - suff|C|e_ntIy f|e>§|ple that. VISCOUS SUresSes CaRy ophoff rod theory to study a simple illustrative problem,
trigger the polymorphic transition which the cell uses to

h . imming directiofd. 6 the deflection of a helical filament by flow. The combination

change its swimming irectiopd, ]'. - of slender-body theoryrather than resistive-force thegry
Despite the importance of the interplay of flexibility and iy, ejasticity theory is an improvement over previous work.

hydrodynamics, most theoretical treatments of the dynamlcginCe we consider small deflectioni®o small to trigger

. ; L ! eponmorphic transformationswe work to first order in the

filament with the long-range hydrodynamic interactions ofyeformation. The small expansion parameter depends on the

low-Reynolds-number flow. For example, many Workers roblem. For example, for loading by hydrodynamic drag,
have solved for the flows generated by a prescribed motio e expand inquR2L/A, where 7 is the viscosityw is the

of thin filaments, such as the planar traveling bending waveg, ;i yelocity, R is the helical radius.. is the contour length
of sperm flagelld 7], or the rotation of one or more rigid of the helix, andA is the bending stiffnessee Eqs(25) and
(11) below]. For characteristic orders of magnitude gf
=103 Ns/m?, v=10 um/s, R=0.5 um, L=10 um, andA
*Electronic address: mjkim@math.utah.edu; present address: De=1072* N m?, zuvR?L/A is a fraction of a percent, justifying
partment of Mathematics, University of Utah, Salt Lake City, UT our approximation. Thus, to leading order in the small pa-
84112, USA. rameter, the flow is that generated by the undeformed helix,
"Electronic address: Thom&owers@brown.edu but the deformation depends on the flow. In addition to al-
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lowing a quantitative assessment of the accuracy of resistive- (a) (b)
force theory as the helix shape varies from close- to open- o
coiled (small to large pitch our calculation can be used to Y 2R
determine the stiffness of the bacterial flagellar filament. >

Measurements of filament elasticity vary over a wide P i
range. Fujime, Maruyama, and Asakura used light scattering
to find a bending stiffnesa\~ (2-4) X 102* N m? for Sal- n
monella typhimuriunfilaments[23]. Later, Hoshikawa and < t P
Kamiya measured the extension of &n typhimuriunfila- gR 7
ment subject to flow along the helix axis to find a shear
modulus of 18°N/m? [24]. For a rod with radiusa <\
=10 nm, this shear modulus corresponds to a twist modulus
C=~10"22N m?[25]. Using electron micrographs of isolated z

filaments, Trachtenberg and Hammel reported Young's FiG. 1. (a) A helix with pitch P and radiusR. (b) One turn of a
mOdulh ranzglng from E~1.04X 10"°N/m? to E~ 1.77 " nhelix “unrolled,” showing the pitch angle, and the orientation of

X 10' N/m? for a variety of filament types. For a rad_las _f}he Serret-Frenet frami@, i, by.

~10 nm, these values correspond to a range of bending stift-

nesses fromA=8x 102 N m? to A=1x 1021 N m? [26]. _ _ _ o
More recently, Takano and co-workers estimated field problem are equivalent to the equations for a helix in no
~10724 N m? for Vibrio alginolyticusby examining the de- field but subject to end-loading by forces only. Although we
formation of the filament of a swimming bacteriupag]. ~ focus on bacterial flagella, our calculations are applicable to
Motivated by these discrepancies, and by recent advances he deflection of any flexible helical filament. .
fluorescent labeling of the filament &, coli [6], we revisit The first section of the body of this article describes the

the calculation of the extension of a filament due to axialmodel. We review the geometry of a helix and introduce the

flow. Our calculation differs from that of Hoshikawa and Material frame. Then we describe the constitutive relations

Kamiya, since we use Kirchhoff rod theory instead of mod-for a helical filament, resistive-force theory, and slender-

eling the filament as a sequence of beads, and since we uBgdy hydrodynamics. This section closes with the formula-

slender-body hydrodynamics instead of resistive-forceion of the equations for a thin polarizable filament in an

theory. We show that resistive-force theory is highly inaccu-external field. The next section presents the results. We give

rate for the close-coiled flagella studied by Hoshikawa and@xPplicit formulas for the deflection of a helix in axial and

Kamiya. Applying the results of the slender-body theory cal-rotational flow using resistive-force theory for a helix with

culation to the data di24], and assumin€=A, we estimate many turns. Then we compute the deflection for an open-

A=~3X 1024 N m2. coiled and a close-coiled helix using slender-body theory,
We also present a calculation of the compression of &nd compare with resistive-force theory. In the last part of

rotating flexible helix. This calculation is closely related to this section, we present the results of the calculation of a

the calculations of Takano and co-work§t8,19], with two pola.nza.ble helix in a field. The fmgl section discusses the

important differencesti) our calculation is valid for a helix ~application of our results to experiments and offers some

rotated by a stationary motor, whereas Takahal. include ~ conclusions. The Appendix describes the details of the cal-

the effect of translation due to swimming, afid we incor- ~ culations of the deformations.

porate hydrodynamic interactions in our slender-body theory Il. MODEL

computation. We show that for an open-coiled helix, '

resistive-force theory gives a modest error for the force per A. Geometry

unit length. Therefore, our calculations Ier_1d further support  ~gnsider a helix of radiu® and pitch P, with its axis

tq those of Takanet al. Since our calculations neglect the aligned along the axis (see Fig. 1

disturbance of the flow due to nearby walls or the cell body,

our estimate of the bending stiffness is still only accurate r(z) = (Rcoq27wz/P),Rsin(27z/P),z). (1

within an order of magnitude. The purpose of these calcula- ) o

tions is to describe OL?r method in gsi?nplified setting. For fixed COF‘FO‘” length., the shapg of the helix is com-
Since biological filaments are often polarizable by electricplmer specified byR/L and the pitch anglex, where

[27] or magnetid 28] fields, we also study the deformation [@na@=27R/P. (Note that the pitch angle changes sign under
of a filament in an external field. In the case of an electricreﬂeCt'on) Equivalently, the helix is specified by its curva-

field, we assume the filament is uncharged, or, if chargeolure"and torsionr, which are defined by the rates of change

subject to a rapidly oscillating ac electric field. Thus, unlike(bf the Serret-Frenet fram(@9],
viscous drag, which amounts to distributed loading by an

. . . n 0 7 —«\[D
external force per unit length, the induced polarization leads al~1|_ -
to distributed loading by an externadomentper unit length. s b[=|-70 0 b |, )
We show that to first order in the deflectigthe small ex- i k 0 0 /\%

pansion parameter in this caseygR’E?/A, wherey, is the s ~ )
anisotropy in the susceptibility per length afids the elec- Wheres=zy1+4x”°R?/P? is arc lengthf=dr/Js is the tan-
tric field), the moment balance equations for the externabent,ii is the normal, and =t X i is the binormal. Inspec-
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sions of thenatural frame which is well-defined even at
points wherex=0.) When forces and moments are applied to
the filament, both the Serret-Frenet frame and the material
frame at each point rotate, but not necessarily by the same
amount. GivernQ), the material frame is determined by inte-
grating Eq.(3). Integration ofé; yields the shape(s). The
details of these integrationdor small deflection are de-
scribed in the Appendix.

C. Constitutive relations

The rate of rotatior{) of the material frame defines the
shape of an elastic rod. L&© denote the rate of rotation in
the absence of external forces and moments. Then the linear
FIG. 2. (@) The material frame for a straight and untwisted rod. Constitutive relation,

(b) The material frame for a straight rod with right-handgdsi- _ (Oh 2 (Oh 2 (07
tive) twist; & and@&, rotate abou; ass increases. M =A(Qy — Q178 + B2, ~ Q37)8; + C(Q5~ 037)84
(5)

tion of Fig. A(b) reveals that=cosaz+sinag, and thusi  determines the momen of elastic stresses acting on a
=-p andb=-cosa@+sinaz, wherep=27z/|P| andp are  cross section with outward norma} at s [25]. Since we
cylindrical polar coordinates. These formulas with E&)  consider helices with circular cross sectioAs,B. Compari-
imply that a helix has curvaturg,=sir? «/R and torsion son of Eq.(2) and Eq.(3) when the filament is undeformed
ro=cosa sina/R, where the subscripts denote the absencehows that2\”=0, O = ko, and QL' =7, Thus,

of external stress.

M = A[Q;8; + (Q; — k)& + C(Q3— 70)83. (6)

We make one final simplification of the constitutive relations
by settingC=A. For a rod made from an isotropic linearly
Now consider an elastic rod. In addition to the curvatureelastic materialC/A=2u/E=1/(1+v), whereu is the shear
and torsion of the rod centerline, there is a new degree ofodulus,E is the Young’s modulus, and is the Poisson
freedom, the twistfor simplicity we forbid stretching of the ratio [25]. For an ordinary material, € v<1/2; therefore,

centerline and relative shear between nearby cross sectiong/A lies in the narrow range between 2/3 and 1.
To describe these degrees of freedom, define a right-handed The internal elastic stresses exert a fokcas well as a

orthonormal material fram¢e,,&,,&;} such thaté; and&,  momentM on the cross section at Balancing the forces
align along the principal axes of the rod cross section, anéind moments on an element of the rod of lenggheads to
&=t [25]. Since this frame is anaterial frame, the frame

rotates with the material as the rod bends and twists—we can * +K =0 (7
think of the vectors as being embedded in the material. The s '

twist Q5 is the rate at whiche, rotates aboug; as s in-

creases, and the two components of curvature of the rod ~

centerline ), and(),, are the rates at whidl, rotates about s TEXF+N=0, (8
&, andé&,, respectively, as increasegsee Fig. 2 The local

angular velocityw of the frame at a gives is defined in a whereK is the external force per unit length aidis the
similar way; thus external torque per unit lengfl25].

B. Material frame

(9e

P =Q X8, ®3) D. Hydrodynamic drag
For a flagellum, the external forces and moments arise
R from hydrodynamic drag. In this article, we will compare
= X§. (4) resistive-force theory and slender-body theory. In resistive-
force theory[20], the drag force per unit length is propor-

The vectorQ=Q,6,+0.,6,+48; is related to the instanta- tional to the local rod velocity relative to the fluid velocity

neous strain in the rod. far from the rod,
Note that if the cross section is circular, then there are A A
many equivalent choices for the direction&f Assuming a K==, [v=(t-v)t]-¢(t vt (9)

circular cross section for the naturally helical rod, we chooserps expression asymptotically approaches the exact relation
{&1,8&,} to align with{A, b} in the absence of external forces as the radius becomes much smaller than the rod’s length
and moments(For small perturbations to a helix, the Serret- or typical radius of curvatura [33]. In this limit, the resis-
Frenet frame is always well-defined; §88-32 for discus- tance coefficients take the form
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£, ~4mylin(\a), (10 D, = |_j||]§ N 3|§’/||Sé | 18
g~ 2mrl/in(Na), (11

again withy=x-x’. Just as in resistive-force theory, the
wherey is viscosity andh is the filament diameter. The force contribution to the flow from the rotation of each segment of
per unit length is anisotropic, with the resistance to motionthe filament about its tangent vector is subleading. Since the
tangential to the rod half the resistance of motion perpenStokes equations are linear, the flow is given by a superpo-
dicular to the rod. Note that replacingby 2\ in Egs.(10)  sition of these solutions, weighted by the force per unit
and (11) merely leads to subdominant additive terms in thelength K (s) of the flagellum on the fluid7],
denominator. Since the rata/'\ =~ 107 for a real flagellum,
the asymptotic limit of Eqs.(10) and (11), in which U == J ds{% ~ aZDi-KL:| (19)
In(A/a)>1, is not attained in practice. Therefore, various : i 87y 167y |
authors have proposed different values for the resistance co- o
efficientsZ; and¢ |, depending on the shape of the flagellumIn Eg. (19), K =K -(t-K)t, §; andD;; are evaluated at
and its motior[7,11,20,34 Nevertheless, since we are only —r(s), andr(s) is the flagellum centerline.
using resistive-force theory to build intuition and to compare  Since the helix is flexible, there will be a disturbance flow
with slender-body theory, we will use Eq4.0) and(11) with of O(nyvR2L/A) due to the deformation of the filament. How-
N=R/sin(a), the periodicity of the helix measured along the ever, the leading-order flow ©(1). Therefore, to calculate

arc length. the deformation of the filament to first orderiwR?L/A, we
The viscous moment per unit length resisting the rotatioronly need to consider the flow generated by a rigid helix.
of an element of the rod abotitis Furthermore, only the force per unit lengih and not the
. flow u, is required to compute the deformation. Our calcula-
N=-{(t- o), (12)  tions are similar to but simpler than those of our previous

where?, =4m7a? is the rotational drag coefficient. This mo- work [10], w.here. we stuldied the forces and flows generated
ment may be safely neglected for a helix of radRs-a, ~ PY two rotating rigid helices.

since the contributions to moment balance, ), from N To solve for force per unit length, we discretize E&9),
are smaller than the leading contributions from the transla@PProximating the filament with a series of short straight
tion of rod elements by a factor ¢&/R)2. segmentg10]. We work in the frame for which the fluid

Resistive-force theory is simple to use, but as we will Seeveloqity vanis_hes f?r from the filament; thus,_ the veIoci:[y of
it is not always accurate. Furthermore, resistive-force theorﬁ?e f|Iafmenr: ISV=vz ffor the. cas'(\el of trﬁ“"?'“ and= “’Zf. .
makes no prediction for the disturbance flow induced by & r(s) for t e case of rotation. Note that there are no ficti-
moving flagellum. Slender-body theory overcomes both ofi0US forces in the rotating frame at zero Reynolds number.
these defects. In slender-body theory, the flow induced by &1ven the velocity at the filament, we enforce the no-slip
moving flagellum is approximated by the flow induced by gPoundary co_ndltlon at a point just at Ehe surface in the middle
line of singular solutions to the Stokes equatidtie equa- Of €ach straight segment,=r(s,)+an(s,), where« labels
tions of flow at zero Reynolds numbéor the fluid velocity ~ the segments and(s) is the unit normal vector as. The

u, nonzero filament radiua prevents the singular solutions
from diverging. Combining the no-slip condition with the
nVu-Vp=0, (13)  discretized form of Eq(19) yields a set of linear equations
for the force per unit length,
V.u=0. 14
. . . e Vie = 2 QiujsKips (20)
One of the singular solutions is the Stokeslgtx)=S;(x iB

—-x")f;, which is the flow a generated by a point fordeat
x'. To determine the Stokeslet tens§; we solve the Stokes
equationg13) and(14) with a point force,

wherev;, is the velocity ak, andK;z=K;(sg). The matrixQ
is found by integrating the Stokeslet and doublet solutions
along over the segments; explicit formulas fQrare given

VAS;f) - Vip+fidx-x') =0 (15 by Higdon in[7].
P E. Polarizable filaments
&_)(isi =0, (16) In this subsection we use the notation of electric polariz-
. ability, but the formulas apply equally well to the case of
to find magnetic polarizability. For simplicity, we assume the optical
5y axis of the filament aligns with the tangent vectorThe
S;(y) = |—'l| + ﬁef (17)  induced polarization per unit length then has the form
iy
p=x.[E-(-E)t]+x(t B}, (21

with y=x-x’ [7,11]. The other singular solution is the dou-
blet ui(x)=Djj(x—x")g;, which is the flow aix induced by a wherey, is the susceptibility for polarization normal tpy;
dipole source of strength at x’. The doublet tensor is is the susceptibility for polarization alony and E is the
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FIG. 3. Dimensionless extensidpvs pitch anglex for a helix

with four turns,R=0.22 um, andP=2.4 um, subject to axial flow.
The hydrodynamic forces are calculated using resistive-forc
theory. The solid line is calculated using the exact expressiofy,for
and the dotted line i$;=1, the approximate dimensionless exten-
sion to leading order ifR/L.

FIG. 4. Dimensionless extensidpvs pitch anglex for a helix
with four turns,R=0.22 um, andP=2.4 um, subject to rotational
(?Iow. The solid line is calculated using the exact expressiorf for
and the dotted line i§,=cot«, the approximate dimensionless ex-
tension to leading order iR/L.

external electric field. Thus, the torque per unit length acting{:_ Fz passes thro‘ﬂgh t_he origin, so ti(L)=0. The deflec-
on the filament is ion in this case is twice as large,

- . 2 i (L/R)si
N=p X E= y-E)E X E), (22) 9nL) _ PR, _Rs(LRsinalt = )
. . . o L A L sina
where y,= x;— x. is the anisotropy in the susceptibility per

unit length. To see how Eq923) and(24) are derived, see the Appendix.
For distributing loading by viscous drag, the total force on
the filament increases with contour lengkh: nul, wherev
IIl. RESULTS is the characteristic flow velocity. Therefore, using the
asymptotic form of the resistive-force coefficients of Egs.

Before stating our results for the deformation of a helix(10) and (11) for simplicity, dimensional analysis implies
under distributed loading, it is useful to recall how a helicalihat the extension of a helix in axial flow obeys

spring deforms when subject to end loading. The deforma-
tion depends strongly on how the ends of the spring are held. dz(L) _ guRL
We will suppose that one end of the spriisg,0, is clamped L A
with r(0)=0 and dr / ds(0) =cosaz+sin a¢. [Hinged bound- ) ) ) ) ,
ary conditions, such asl -A=0 ats=0, are not considered anq the extension of a helix rotating with angular spedd
since they would allow the helical axis to rotate abp(@), & viscous fluid obeys
leading to large displacements\ common choice for the 5z,(L) _ goRL
other ends=L, is to have the line of action of the forde L = A
=FZ coincide with the helical axi&. This condition leads to
a momentM =RF¢ ats=L, where the origin for the moment wheref, andf, are dimensionless functions, the “t” subscript
is 0. For C=A, the extension of the helix to first order in the stands for “translation,” and the “r" subscript stands for “ro-
dimensionless forcER?/A is tation.” In the Appendix, we also calculate the extension of a
. . helix hanging under its own weight.
(L) = E{l_gw} (23 For distributed loading of a polarizable filament by an
L A L sina external fieldE=EZ, the moment per unit length is aligned

N hat Eq(2 hibits th limit ag— O for fi with p, and has n@ componen{see Eq.(22)]. Integrating
Rofﬁ Eh:ist Iir?ﬂ(t ?)hgxur'g;i;”i g (;orp())zri ;rr;;?aslzl el (t)o ?;E:;?Sd dM /ds+N=0 therefore leads to a total moment that scales

Since the rod is inextensible, the force does not lead to aW'th R notL: M« yE°R Therefore, the extension obeys
increase in the contour length. Since there is still a moment oz(L)  x.ER
acting ats=L, the rod deflects; however, the component of - Tff(a.R/L), (27)
this deflection in the direction is second order in the dimen-
sionless force, andz,(L)=0. Note also the oscillations in where the “f" subscript stands for field. To summarize, we
8z,(L) (for fixed L and as a function oy, say arising from  have shown that for a rod in a flow, the extensién is
the second term on the right-hand side of E2@). These proportional toL? for a rod polarized by an external field,
oscillations become negligible wheé/L <1, indicating that  the extensiondz is proportional toL.
they are an artifact of the boundary conditions. For large
L/R, we recover the familiar resulffor C=A) &z(L) o
=FR2/A [35]. A. Resistive-force theory

SinceM (L)=0 in all of our distributed loading problems, The Appendix gives the details of the calculationfff,,
it is more appropriate to make comparisons with an endandf;. First we discuss the calculation of extension by drag
loading problem in which the line of action of the forée  using the resistive-force theory approximation. The calcula-

f(a,RIL), (25

fi(a,RIL), (26)
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FIG. 5. The viscous drag force per unit lendth in units of FIG. 6. The viscous drag force per unit lendgghin units of v,

Rnw, for an open-coiled helix rotating with speedvs arc lengttrs for a close-coiled helix subject to axial flow with speed/s arc
in units of L. The filament radius ia=0.01 um, the helix radius is  lengthsin units of L. The helix parameters are taken fr¢2d]: the
R=0.22 um, the pitch isP=2.4 um, and the total arc length is filament radius i.=0.01 um, the helix radius is 0.&m, the pitch
~11 um. is 0.5 um, and the total number of turns is 11.5.

tion can be carried out analytically, but the full expression iselements of a slender body. The slender-body theory dis-
too lengthy to give here. Sinde/ R=50 for a normakE. coli cussed in Sec. Il accounts for these interactions, and gives a
filament[R=0.22 um, P=2.4 um [6], Fig. 5a)] with four = more accurate value for the external drag force per unit
turns, the leading terms df andf, in an expansion ifR/L lengthK. Figure 5 showK for a rotating helix with an open
give a very good approximation. For a helix immersed in acoil (the normal helix parameters given abpwelculated by

uniform flow in the positivez direction, we find resistive-force theory and slender-body theory. The two cal-
" culations agree very well for the norméK;) component,
9z(L) = @[1 +O(RIL)]. (28)  with significant differences for the other two components. A
L A much greater difference between the two theories is shown in

Fig. 6, which displays the components of the drag forces per
unit length for a close-coiled helix in axial flow. Each coll
8z(L) ¢ wR3L cota obstructs the flow to the next coil. Since slender-body theory
L = A [1+O(RL)]. (29 accounts for this effect but resistive-force theory does not,
_ _ _ the component of the force per unit length along the flow
When C=A, the extension of a helix due to axial flow, EQ. girectionz.K ~b K is substantially smaller in slender-body
(28), is independent of the pitch angle just as in the case theory than in resistive-force theory.

of end-loading, Eq(23). In particular, the sign of the exten-  gjnce the drag forces per unit lengthmust be computed
sion is independent of the handedness of the helix. On thg,merically in slender-body theory, we numerically integrate
other hand, the sign of the extension of a rotating h(_ahx de1y find the deflection of the entsee the Appendix Our
pends on the handedness: a left-handed lielix0) rotating  eqits are summarized in Table I. There is a fortuituous can-
counterclockwise when viewed from the esdL (0>0)  cgliation of errors leading to an accurate estimatedat.)

will compress| 6z(L) <0]. Note that the effect of neglecting for 4 rotating normal helix. The resistive-force theory esti-
the subleading terms iR/L is to ignore the effects of bound- mate is reasonably good for a normal helix subject to axial

ary conditions. Equation8) and(29) cannot be correct for  fiow, However, the error made by resistive-force theory is
all a, since inextensibility of the filament implies that the |5ge for a close-coiled helix.

extension must vanish as— 0 for fixedR. The terms which
are subleading irR/L are precisely the terms which cause C. Estimation of bending stiffness

the deflection to vanish for smadl, and they also lead to . .
oscillations insz as a function ofa. Figures 3 and 4 show e can use the results of the preceding subsections to

the dependence df and f, on « using formulas computed make estimates for the bending stiffness of bacterial flagellar
;

without assumindr/L <1 (see the Appendjxfor the case of

L/R=50. Only the range frore=0 to o= /2 is shownf; is TABLE |. The ratio of the extension computed by slender-body

even ina, and f, is odd in @. A normal filament hasa  theory to the extension computed by resistive-force theory,

~0.52 rad~0.337/2 rad, which is in the region where the 92°°'(L)/&Z*(L), for an open-coiled helix and a close-coiled

For a helix rotating with angular velocity=wZ,

oscillations are relatively small. helix.
Flow Open coil Close coil
B. Slender-body theory ]
- . axial 0.7869 0.2362
Resistive-force theory fails to properly account for the ,iational 0.9917 03742

long-range hydrodynamic interactions among the different
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filaments. First consider the compression of a rotating helix 2];5
due to viscous drag. Suppose that the body of the bacterium 30f

is held fixed(as when the cell is adhered to a glass cover

slide), so that there is no external axial flow. The flagella of

E. coli rotate at 100 Hz; it has been observed by Berg and 1.0

collaborators that there is no noticeable difference in the

axial length of rotating and de-energized flag¢B&]. Thus,

the change in axial length must be less than their experimen-

tal uncertainty of 0.2um. Taking the viscosity of water to be

1072 N s/n?, and using Eq(11) for ¢, we find that the bend- FIG. 7. Dimensionless extensidpvs pitch anglea for a helix

ing stiffnessA for a normal filament must satispp=1.0  with four tumns,R=0.22 um, andP=2.4 um, subject to an external

X 10724 N m?. Using slender-body theory for this estimate field. The solid line is calculated using the exact expressiorffor

leads to the same bounél=1.0x 10724 N m2. Although our and the dotted line i$;=2 cosa, the approximate dimensionless

bound is consistent with the estimate dfl9], A  extension to leading order iR/L.

~102*N m?, the more important implication of our calcu-

lation is that resistive-force theory is reasonably accurate fotibility of x,~5x102°C m/V. For these values anR

this geometry. =0.2 um andA=102*N m? we expect a small deflection
We can apply our calculation of the extension of a flexibleproportional toR?y,E?/A~0.02.

helix in axial flow to the data of Hoshikawa and Kamiya,

who used optical microscopy to record the deflection of a

detachedS. typhimuriumfilament in an external flow24]. IV. CONCLUSION

They used a bead and spring model to determine the bending

stiffness. As mentioned in the Introduction, our model differs i In th'ts %rt'df’ \;\Ile havz cal;:ulatle(fj_ tlhde delflectldon (t))f hel:jcal
from theirs since we treat the filament as a continuum, anéﬁmen S aue 1o Tlow and external lieids, placed a bound on

1.5

0.5

0.1 02 0.3 04 705

bending stiffness d&. coli flagellar filaments, and rein-
we use the slender-body theory to account for long-rang € . : :
hydrodynamic interactions. This last difference is crucial, erpreted the data of Hoshikawa and Kamiya Sortyphimu-

since neglecting these interactions will lead to an overestit UM using .slender-body hydrodynamlcs.. These e'stlmates
mate of the bending stiffness. Although Hoshikawa and Ka—COlJId be refined by carrying out new experiments using fluo-

miya observed large deflections, they found that the exterfeScent labeling of flagellar filameri] and subjecting them

sion was linearly proportional to the speed of the externaF:c vagmtjs ithrFIal Ioa?mg clt()jngltlor:s. Ec;r example, ?neben((jj
flow; the filament behaved like an ideal spring. Therefore ' @ d€tached fiament cou € stuck to a magnetic bea

our small-deflection calculation should accurately captur urning r.apldly enqugh to Iead toa grea.,ter compression than
hat attained by a filament driven & coli's flagellar motor.

the slope of the extension-velocity curve. Using their dataLikewise one end of a detached fluorescent filament could
from [24] and our resistive-force theory equations yiekls be held in a uniform flow, as in the work G24]. A third

=1.4X 102 N m? with the slender-body theory, the esti- ; : .
mate iSA=3.2X 10°24 N m2. class of experiments wquld be to subject fluorescgnt fila-
ments to an ac electric field, analogous to the dark-field ex-
periments of 27]. In each of these three experimental situa-
tions, it has been shown that sufficiently great loading will
An external electric field tends to align the tangent vectorlead to polymorphic transformations. Therefore, before gen-
of a flagellar filament with the field direction. For example, eralizing the linear theory described here to handle large de-
straight polymorphic filaments align along the field, butflections, the next challenge is to incorporate polymorphism
close-coiled forms align with the helical axis perpendicularinto the elastic theory.
to the field[27]. The same effect will tend to unwind a flex- Note added in proofRecently, we became aware of the
ible helical filament with a pitch intermediate between thesecalculations of Flynn and M§37]. These authors find that
two extremes. The helix will extend independent of its hand-C/A is approximately 22.7 for the filament. Such a ratio does
edness, with the extension vanishing tor 0 (straigh} and  not lead to qualitative changes in our results, but would lead
a=m/2 (close-coiled. Following the approach outlined in to an order of magnitude estimate 6f of approximately

D. Polarizable filament in an external field

the Appendix, we find 1024 N m? from our slender-body calculations and the data
L) 2RPyE? R L si of [24].
%:¢[c05a——cotasin< SIha)}
L A L R
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being completed. ds koM1+N3=0 (A9)

APPENDIX A: CALCULATION OF DEFORMATION with M;(L)=0 for the cases of loading by drag and external

Consider a helical filament of length with one end(at ~ field. )
s=0) clamped and the other eldts=L) free. We will study Once the moment is found _by formul_as analogous to Egs.
the steady-state deformation when the helix is subject to exA4)—A6), the strain vectof) is determined by the consti-
ternal loading. First we describe the general approach, thefytive relation, Eq.(6). Let 62=Q-Q©; then, since we
we consider the particular cases of end-loading, loading biSSUMEC=A,
flow, and loading by external field. We work to first order in
the loading(the dimensionless parameters characterizing the
magnitude of the loading are given belpwince the exter- The next step is to integrate E() to find élzéfo)+5”el; to
nal force per unit lengtkk vanishes when the load vanishes, first order, Eq.(3) is
Ki=8&-K ~&%.K, where the errors are second order in the 4(5%)
loading. A similar conclusion holds fdy;, F;, andM;. Thus, — =00 x 5+ 50 x &9,

80, =8 -50=8".50=M/A. (A10)

(A11)

the components of the force balance equation, &Y. to ds
leading order are

dF
d—l — 1oFp+ koF3+ Ky =0, (A1)
S
dF
d—sz +1F1 +K,=0, (A2)
dF
d—;—K0F1+K3:O, (A3)

where we have used E@3) for the rate of change of the
undeformed framed&®/ds=Q© x &°. Since the end as

Solving Eq.(A11) amounts to finding the rotation which car-
ries the frameéfo)(s) to the frameg(s). Since the deforma-
tion is small, this rotation is close to the identity, and

5 =J;87, (A12)

where J;; is an antisymmetric matrixnote that Eq.(A12)

properly ensures thafg -éi(o)zo]. In terms ofJ;;, Eq. (A1l)
is
a; )
= € (A + 79, (A13)

ds

where € is the totally antisymmetric symbol. ;=€ Jj,

=L is free, the boundary conditions for these equations aréhen Ed.(A13) becomes

F,(L)=0 for the cases of loading by drag and external field.

Equations of the same form as Ed#&1)—(A3) appear

several places in our analysis. The general solution is given

by

F1=Cgysin(os) +sin(as)/o-f ds' coqos’)P

—cos(crs)/af ds' sin(os’)P, (A4)
FZZJ dS/(Kz - TOF]_)! (AS)
F3 = J dS’(K3 + K0F1)1 (AG)

whereo= x5+ 5=sin(a)/R, P=(1K,- koKz+dK;/ds), and
the integration constar@, is determined by substituting the
expressions for th€&; from Egs.(A4)—(A6) into Eq. (Al).

The components of the moment balance equation(&g.
to leading order are

dM
— = oM+ kM3 = F + Ny =0,

ds (A7)

dMm

d_52+7'0M1+F1+N2:0, (A8)

dJ
—2 — 70dy+ Kod3 = 8, (A14)
ds
dJ
d_52 + 70d; = 80y, (A15)
dJ
d—s3 - Kody = 8. (A16)

We assume clamped boundary conditionssad, so that
&(0=22(0), or J(0)=0. Once Egs.(A14)—Al6) are
solved, the tangent vector is given by

a0)

& =20 + 3,80 - 3,809, (A17)

Finally, to find thez component of the deflection of the free
end, we integrate,
L L
&(L):J ds’2-5é3:—f ds'J;sina. (A1)
0 0
The choice of lower limit in the integral of EQA18) en-
forces the boundary conditiaz{0)=0.
We now apply these equations to the particular cases dis-
cussed in the body of this article.

1. End-loading

This case is classical and is included only for comparison.
One end of the rod is subject ®=Fz. Since there is no
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external force per unit length, the force acting on each cross 1}-})
section of the rod is constanE(s)=Fz. We work to first 0.8

order inFR?/A. As discussed in the text, there are two cases,
depending on the line of action &. Consider first the case

in which the line of action of is the axis of the helix. Then 0.4
the force contributes a moment about the origin of the rod,

0.6

r(0)=0. Solving the moment equations, Eq@\7)—A9), 02

with the constant force ani,=0 leads toM;=-FR cosq, oL 02 05 ol —os
M,=FRsina, andM3;=0. Using these moments to compute ' ' N s

58, and 6z(L) leads to Eq(23). FIG. 8. Dimensionless extensidy vs pitch anglex for a helix

If the line of action of F is parallel to thez axis but ~ With four tums,R=0.22um, andP=2.4 um, subject to external

passing through the origin, then there will be no moment aforce per unit lengtiK =wz. The solid line is calculated using the

s=L. This change in the boundary conditions leads to mo£xact expression fak,, and the dotted line i§,=1/2, theapproxi-

ments that depend o%) mate dimensionless extension to leading ordeR/t.

M; =RFcosasino(s-L)], (A19)
' 7 FZ:@(L—s)—%sir{a(L—s)], (A32)
M, = RF(ryo)cosa{coga(s—L)]-1},  (A20) 7
M5 = RF(xy/0){1 - co§o(s—L)]}. (A21) Faz R0 g4 %zﬁ’ sifo(L-9], (A33)
g

Integrating these moments using our general approach to find . .
57(L) leads to Eq(24). whereK,=-K; cosa+Kj;sina andK,=K; sina+K; cosa.

Note thato is the periodicity of the helix measured along its
arc length. Integrating the moment equations, £E43) and

2. Loading by hydrodynamic drag (A8), with these forces results in

In this case we work to first order imuLR2/A. In My == (1K, + koK ){1 = coga(L - 9)]}/o®
resistive-force theory, the force per unit length acting on the Qe _
rod is uniform for axial flow, + ok(L 9sinlo(L - )/ (A34)
K!=0, (A22) M, = ko( koK, = T0K,) (L = 8)/0® + [ k7oK,
: _ + (75— kYK Jsino(L - 9))/o*
K2 = 2§HU SIn «, (A23) 3
- 3K (L= s)cod (L - 9))/o®, (A35)
K= ¢ cosa, (A24)

M3 = ko(70K, + koK) (L = 9)/0° = (270K, + 5K )sin oL

and also for rotational flow,
- 9)J/o* + korK (L = S)cog (L - 5)]/0>. (A36)

r—
K1=0, (A25) For the case of viscous drag, these moments lead to the ex-
; tensions of Eq928) and(29), shown in Figs. 3 and 4. For an
K2 =2(p cosa, (A26) isotropic external force per unit length, Eq#28)—(A30),
} _ the extension to leading order RV/L is
Kz=-{uv sina, (A27) s2L) WRL
wherev=wR in Egs.(A25)—(A27). - wa(a,R/L)- (A37)

The force per unit length for a helix hanging under its
own weight(or a charged helix in a dc electric figlts also  Figure 8 shows the extension to all ordersRifL for a helix
uniform, and easily handled by our method. Thus, we alsavith four turns and the pitch and radius of a normal flagellar
consider a helix to an isotropic force per unit lengtrwz,  filament.
w For the slender-body calculation of the deformation of a
Ki=0, (A28) helix in axial or rotational flow, we use E¢19) to solveK,
and then numerically integrate to eventually fisziL).

KY=wsina, (A29)
¥ =wcosa. (A30) 3. Loading by external field
Solving Egs.(A1)—(A3) for uniform K;, we find In this case, the external force per unit length vanishes,
K implying F=0. But the field exerts a moment per unit length
F,=—%/1-cosa(L -9, A31 on th_e filament; foE:Ez,_ the only nonvanishing component
! a'{ 3o I} (A1) of N is N;=y,E°Rcosa sina [see Eq(22)]. Here the small
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parameter ig,E°R?/A. Solving Eqs(A7)—(A9) for this case
leads to

M; = Ry,E? cosa sifo(s—L)], (A38)

M, = Ry.E%(ro/o)cosa{codo(s—L)]- 1}, (A39)

PHYSICAL REVIEW E71, 021914(2005

M3 = Ry.E%(ko/0){1 - cogo(s—L)T}. (A40)

Note that this moment has the same functional form as the
moment for end-loading, Eq§A19)—(A21), which explains
why the extension due to an external field, E8D), has the
same dependence dnas in Eq.(24).
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